
www.manaraa.com

Illinois State University Illinois State University

ISU ReD: Research and eData ISU ReD: Research and eData

Theses and Dissertations

3-19-2015

Using Software Defined Networking To Solve Missed Firewall Using Software Defined Networking To Solve Missed Firewall

Architecture In Legacy Networks Architecture In Legacy Networks

Jared Dean Vogel
Illinois State University, jdvogel@ilstu.edu

Follow this and additional works at: https://ir.library.illinoisstate.edu/etd

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Vogel, Jared Dean, "Using Software Defined Networking To Solve Missed Firewall Architecture In Legacy
Networks" (2015). Theses and Dissertations. 366.
https://ir.library.illinoisstate.edu/etd/366

This Thesis is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more
information, please contact ISUReD@ilstu.edu.

https://ir.library.illinoisstate.edu/
https://ir.library.illinoisstate.edu/etd
https://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ir.library.illinoisstate.edu%2Fetd%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd/366?utm_source=ir.library.illinoisstate.edu%2Fetd%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu

www.manaraa.com

USING SOFTWARE DEFINED NETWORKING TO SOLVE

MISSED FIREWALL ARCHITECTURE

IN LEGACY NETWORKS

Jared D. Vogel

66 Pages May 2015

This study is concerned with migrating traditional networks and their inherent

firewall architecture to Software Defined Networking (SDN) architecture to provide an

initial attempt at preventing application downtime due to hidden firewall domain rules. In

legacy organization environments the networking engineers, firewall teams, and

application analysts are often silo groups, but Software Defined Networking (SDN) can

blur the lines between these group silos.

This thesis first outlines the interworking of SDN, traditional firewall architecture

and how it interacts with SDN, an experiment of implementation, and the resulting

conclusions.

Testing with SDN shows we are approaching new environments where the edges

of network are no longer dominated by firmware on switches and routers. The

technologies behind SDN allow for the programmability of the entire network, which

creates a logical flow of both network traffic and firewall policies that allow us to bypass

traditional errors that may arise from physically segmented networks.

www.manaraa.com

The physical and logical level network programming inherent in SDN allows

organizations to merge and adapt skill sets of networking engineer and application

developers to reduce the risk and reliance on firewall expertise.

Utilizing OpenFlow protocols and flow table concepts presented in SDN we can

propagate firewall rules centrally and logically, which provides end-to-end traffic with

firewall rules in our network. Using these concepts reduces the traditional firewall

complexity for organizations. In this study we present a paper prototype that

demonstrates that we may add in firewall rules to a centralized instance allowing our

SDN controllers to provide firewall protection throughout the entire network instead of

isolated risk domains or tiers. In the prototype application developers are prevented from

calling incorrect ports and possibly missing hidden local firewalls not previously known.

The approach described in this paper is based on a case study of several large

American firms.

www.manaraa.com

USING SOFTWARE DEFINED NETWORKING TO SOLVE

MISSED FIREWALL ARCHITECTURE

IN LEGACY NETWORKS

JARED D. VOGEL

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

School of Information Technology

ILLINOIS STATE UNIVERSITY

2015

www.manaraa.com

© 2015 Jared D. Vogel

www.manaraa.com

USING SOFTWARE DEFINED NETWORKING TO SOLVE

MISSED FIREWALL ARCHITECTURE

IN LEGACY NETWORKS

JARED D. VOGEL

 COMMITTEE MEMBERS:

 Yongning Tang, Co-Chair

 Douglas Twitchell, Co-Chair

www.manaraa.com

i

ACKNOWLEDGMENTS

I would like to thank and dedicate this to the faculty at Illinois State University. I

would specifically like to thank Dr. Yongning Tang and Dr. Douglas Twitchell the

participating committee members. Acknowledgements to my family Sherri, Justin, and

John for always staying with me and offering there love and time. I would like to also

like to thank the academic community as a whole. I have been lucky enough in series of

random events to be rewarded with nothing but the most patient, brilliant, and

understanding minds in the field of Information Technology. Last but certainly not least,

Diana, Harley and Ashley. Terrible days vanish every time I walk through my home door

and I am greeted with eight paws and a warm embrace.

“Did I not say before, that I was writing this Requiem for myself?” – Mozart,

“After saying this, he looked yet again with tears in his eyes through the whole work.” –

Maynard Solomon in Mozart: A Life p. 494

“Education is the key to success in life, and teachers make a lasting impact in the

lives of their students.” –Solomon Ortiz

“I have come to believe that a great teacher is a great artist and that there are as

few as there are any other great artists. Teaching might even be the greatest of the arts

since the medium is the human mind and spirit.” – John Steinbeck

J.D.V.

www.manaraa.com

ii

CONTENTS

Page

ACKNOWLEDGMENTS i

CONTENTS ii

TABLES iv

FIGURES v

ABBREVIATIONS & ACRONYMS vi

CHAPTER

I. INTRODUCTION 1

Thesis Organization 4

II. REVIEW OF RELATED LITERATURE 6

Software Defined Networking Infancy 7

Protocols and Standards 8

Traditional Firewalls 9

Conclusion 10

III. SDN CURRENT IMPLEMENTATIONS 13

Why Was SDN Proposed? 13

Key Factors for Proposing SDN 13

 Dynamic Network Traffic Patterns 14

 Mobilization 14

 Security and Controls 14

 Voice, Television, and Big Data 15

 Policies, Scalability, and Usability 16

SDN Architecture 16

SDN Controllers 19

SDNi 21

www.manaraa.com

iii

OpenFlow Protocol and Switches 22

Flow Tables 24

SDN Vulnerabilities 25

Conclusion 26

IV. FIREWALL ARCHITECTURE 28

Abstract Firewall Architecture 29

Types of Firewalls 30

 Packet Filtering 30

 Application – Gateway Firewalls 33

 Circuit Level – Gateway Firewalls 34

Multiple Firewall Environments 35

Conclusion 40

V. SDN REDUCING COMPLEX ARCHITECTURES 42

SDN Topology Upgrade 43

FlowTables and Rules 45

Pseudo Code Logic Proposal 48

Mathematical Proof Pseudo Code 48

How Do Flows, Flow? 50

Simplified Flow 52

VI. DID IT WORK? 53

SDN Extended 54

Future Work 56

Conclusion 57

REFERENCES 58

APPENDIX A: Using Software Defined Networking to Solve Missed Firewall

Architecture in Legacy Networks 63

www.manaraa.com

iv

TABLES

Table Page

 1. OpenFlow Ports 24

 2. Flow Table Components 25

 3. Packet Filtering Subtypes 33

 4. Example of Firewall Rules 40

 5. Policy Rule Logic 46

www.manaraa.com

v

FIGURES

Figure Page

 1. Software Defined Networking Architecture Abstract 18

 2. SDNi Overview 21

 3. OpenFlow Switch 23

 4. Single Firewall Abstract 29

 5. Filtering 32

 6. Firewall Risk Domain Problem 36

 7. Close Up Intranet 37

 8. SDN Topology Upgrade 43

 9. Flow Controller Logic 49

 10. Flow Table Logic 51

 11. Flow Topology 52

www.manaraa.com

vi

ABBREVIATIONS & ACRONYMS

SDN Software Defined Networking

ONF Open Networking Foundation

OVSDB Open Virtual Switch Database

JVM Java Virtual Machine

QoS Quality of Service

SDNi Software Defined Networking interface

IETF Internet Engineering Task Force

IP Internet Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

OSI Open Systems Interconnection

NAT Network Address Translation

WAN Wide Area Network

LAN Local Area Network

IIS Internet Information Services

OF OpenFlow

www.manaraa.com

1

CHAPTER I

INTRODUCTION

Can Software Defined Networking (SDN) help organizations manage their

security architecture? How can SDN help safely implement new elastic firewall

environments within an organization? These are questions facing enterprises today.

Enterprises today are increasing in data aggregation, data utilization and multilayered

security architecture. According to the study Exploiting In-network Aggregation for Big

Data Applications, [t]his generates high network traffic, which is hard to support using

traditional, oversubscribed, network infrastructures. Coinciding with oversubscribed

network infrastructure are common firewall policies and access control rules.

In a traditional network, if an organization was to alter an application from using

Hyptertext Transfer Protocol (HTTP), which is on port 80, to Hypertext Transfer Protocol

Secure (HTTPS) on port 443 and firewall rules in place for allowing HTTP, the result

would be the failure of the application. At Oracle, inc. Bartley, et al. found that, “[a]s the

IT portfolio grows, IT legacy investments and architectures begin to stifle business

innovation and increase operational costs [40].” Bigger portfolios mean an increasing the

amount of responsibilities and expertise required for application developers. Allowing

problems like a simple port switch and firewall rule violation to occur brings applications

down.

“80% of unplanned outages are due to ill-planned changes made by administrators

("operations staff") or developers [41].” This statistic taken out of the IT Process Institute

www.manaraa.com

2

Visible Ops handbook shows the need for solutions in common enterprise environments.

Colville and Spafford [42] predicted that, “[t]hrough 2015, 80% of outages impacting

mission-critical services will be caused by people and process issues, and more than 50%

of those outages will be caused by change/configuration/release integration and hand-off

issues.” The misconfiguration problem explored in this paper includes the people and

process issues in firewall policy management. Depending on the organizations size and

business model, firewall policy management errors can be costly to overall operations by

taking offline time sensitive revenue generating applications.

This paper will focus on abstracted enterprise examples of how SDN can

potentially reduce the complexity of security architectures. The primary focus will be on

firewall consolidation to enable the deployment of rapid and secure environments, which

should help organizations, avoid downtime resulting from an application configuration

that violates firewall rules. Secondarily it will delve into the potential benefits

organizations would see after implementation. Using SDN we will outline how the

number of firewall layers in an organization can be potentially managed more effectively,

paving the way for a new solution of using SDN. Effective management of these policies

contributes to eliminating the process portion of our problem.

This study will also outline how SDN is currently being used and customized to

meet organizational needs in alignment with best practices of the Open Network

Foundation (ONF), the current leaders in the software defined networking field. Google,

a large enterprise currently uses OpenFlow technology. Recognizing the previous

problems listed, the company has separated out its hardware from software deploying

SDN switches. In the words of Amin Vahdat, “It provides logically centralized control

www.manaraa.com

3

that will be more deterministic, more efficient and more fault-tolerant [43].” At the Open

Network Summit in 2014, Vahdat explained Andromeda, their SDN based substrate for

network virtualization efforts. “Rather than being forced to create compromised solutions

based on available insertion points, we can design end-to-end secure and performant

solutions by coordinating across the stack [44].” By using SDN to create logical stacks

across the globe, they can provide elastic network connectivity and scalability. This

utilizes the networks processing power to provide the high availability and elasticity other

traditional organizations don’t have.

The security examples presented in this paper include anonymous data collected

from several enterprises currently not using SDN. They are compliant with federal

security standards such as National Institute of Standards and Technology SP 800 and

Sarbanes-Oxley regulation. We will test a solution that uses this anonymous data to build

a multi layered firewall environment. With the environments built our final goals are the

reduction of complex policies, having a simpler firewall architecture, and the creation of

domain risk classifications, which will enable robust network architecture. In Chapter 5,

we propose an SDN-based paper prototype that fulfills these goals. We show that this

prototype allows us to move an application from HTTP to HTTPS without downtime due

to firewall rule violation.

“Most programmers mainly focus on functionality and make security a secondary

priority [44].” The lack of focus on network security and network flexibility creates

common risk problems such as misconfigurations and omitted processes. Compounding

these problems is the need to maintain end-to-end flows within an organization’s multi

firewalled environment. Redefining multiple firewall environments or even changing

www.manaraa.com

4

firewall policies to meet new application development is often overlooked. When

changing the priority of applications organizations need to review the network and

security architecture that operates within the organization. Even if they have begun

implementation of SDN, Organizations still have the challenge of maintaining separate

legacy corporate, and local firewalls. The need for a manageable combined solution is

present, but the tools, standards and adoption of SDN are still in its infancy creating a

challenging environment for realizing its full benefit.

We also show that future work will be needed as the literature on aggregating

firewall and access control language for policies fail to mention the actual limitation of

the hardware.

Thesis Organization

The remaining chapters of this thesis contain the following:

 Chapter 2 – Review of related literature covering SDN, software defined

networking with firewalls and how current firewall environments operate.

 Chapter 3 – Software defined networking and how it is being currently proposed,

implemented, developed, researched and utilized.

 Chapter 4 – Abstract organizational security architecture, firewall problem being

proposed with anonymous data collected.

 Chapter 5 – Using SDN to remove multiple risk environments and firewalls

decreasing the complexity of security architecture.

 Chapter 6 – Did it work? Proof-of-concept with hypothetical working model.

Conclusion on results and proposals.

www.manaraa.com

5

 Appendix – Scripts, possible code to utilize in implementing the proof-of-concept,

and all pseudo code used.

www.manaraa.com

6

CHAPTER II

REVIEW OF RELATED LITERATURE

The literature analyzed for this paper includes established SDN technologies,

established firewall technologies, and emerging concepts combining the two fields

together. An abundance of information is present for both topics even though SDN is a

technology still in its infancy being rapidly developed. Numerous methodologies are

present when applying new concepts to SDN and its open source projects due the

modularity and availability of the software. Large amounts of information and literature

reside within the ONF, Stanford and Berkley SDN repositories. “Implementation of SDN

is being touted by large enterprises such as Google, Amazon, and hardware providers like

Cisco [2].”

A large player in the SDN field is The Open Networking Foundation (ONF).

“Open Networking Foundation (ONF) is a user-driven organization dedicated to the

promotion and adoption of Software-Defined Networking (SDN) through open standards

development [1].” ONF was formed due to two studies on SDN gaining traction from the

Universities of Stanford and Berkley. “McKeown and colleagues developed a standard

called OpenFlow that essentially opens up the Internet to researchers, allowing them to

define data flows using software--a sort of "software-defined networking [2].” Carrying

this SDN technology forward McKeown and colleagues formed the ONF along with

other participating Universities and organizations.

www.manaraa.com

7

According to the member listing of the ONF [3] over one hundred and seventy

organizations and corporations are listed as members including major players such as

Citrix, IBM, Intel, Broadcom, Dell, Cisco, and T-Mobile. With a large participating

membership and committee the ONF has gained support among hardware vendors

adopting the standards and protocols. Because many members are leaders in their

respective technology fields, SDN could not be disregarded as a fad or passing phase

technology. It has gained a strong foothold in the turning years since its inception around

2009.

Software Defined Networking Infancy

The ONF provides technical documentation introducing the concepts of SDN and

the OpenFlow protocol. Methodologies that motivate the ONF seem to have shifted from

academic purposes [3] to more commercial. “Today, our Technical Communities

continue to analyze SDN requirements, evolve the OpenFlow Standard to address the

needs of commercial deployments, and research new standards to expand SDN benefits

[1].”

SDN being utilized with numerous approaches and problems they are solving, it is

difficult to find research that brings fruition of working models within their conclusions.

The ONF does provide a complete setup of architecture explanations and designs to the

details of SDN ability and function. Unfortunately, a lot of the literature provided on the

front end of their foundation reads like advertising [7]. Open source organizations are

easily found to compliment the ONF literature and provide current working projects to

engage with [8]. The white papers on the actual hardware specification for their switches

[13] down to the actual protocol coding and scripts [29] provided by the ONF are not

www.manaraa.com

8

only comprehensive, but also allow for abstracting new theories. Entire working models

along with associated code repositories are provided by the ONF.

Protocols and Standards

The intense competition among hardware vendors has been beneficial for SDN

and the OpenFlow protocol. For example, vendors have begun to advertise how well their

hardware is utilizing the SDN and OpenFlow standard as a selling point for cloud

services. When researching vendor claims, however, it is considered best practice to

check with independent third party laboratories. One such laboratory is the Tolly Group,

which claims to be “…positioned to certify vendor solutions and thereby provide

evidence that their products meet or exceed marketing claims [44].” The Tolly Group has

been conducting tests recently concerning switches that are OpenFlow enabled and

operating on an SDN. In an example test they found that, “the IBM BNT RackSwitch

G8264 [an SDN-based switch] demonstrated up to 100 times the packet buffering

capacity and up to 70 percent less energy consumption than competitive switches, while

maintaining full line rate and providing 160 Gbits/second more capacity than any other

switch tested [12].” This private competition combined with international organizations

such as Internet Engineering Task Force and Institute of Electrical and Electronics

Engineers has provided strong backing and standardization of the OpenFlow protocol.

Journals and independent consultants refer to the newest version of OpenFlow as the de

facto standard [11], however other protocols have been in development. OpenFlow being

the standard is not without flaws as evidenced by the ONF adopting other protocols in

development into the OpenFlow standard. “The Open Networking Foundation (ONF)

recently embraced NETCONF and made it mandatory for the configuration of

www.manaraa.com

9

OpenFlow-enabled devices [45].” Adoption of these protocols in development broadens

the OpenFlow standard providing a wider environment in which to develop. This

expanding scope of OpenFlow provides flexibility and depth upon to develop better

standards. NETCONF a protocol recently integrated into OpenFlow is very useful to both

OpenFlow and to solving this studies problem. “It provides an administrator or network

engineer with a secure way to configure a firewall, switch, router, or other network

device [45].”

The open source of the controllers APIs and interfaces are concerning. “[O]pen

APIs for security functions to SDN have not yet appeared and have not begun to

standardize, so API incompatibilities may also cause security holes to appear [14].”

Without a clear guidance or grasp on the controller APIs themselves, numerous solutions

are still being proposed such as westbound models to have controllers communicate to

each other [10] known as SDNi or vertical topologies.

Traditional Firewalls

Literature on firewalls and their detailed workings is in over abundance.

Traditional firewalls have been around since the dawn of the Internet and their use is

considered by some to be obsolete or failing [15]. Massive amount of firewall

architecture and policies that have been created can readily find new literature and dated

literature. Dated literature [18] will provide the framework of our firewall architecture

due to their current and established dominance in the field [16]. Although firewall

literature is often dated, new sources are being generated daily for new concepts and

designs. Literature current this year continues to categorize firewalls into the same three

www.manaraa.com

10

types proposed 27 years ago [17]: packet filtering firewalls, circuit gateways, and

application gateways [19].

Research is also being conducted on solving similar problems presented by virtual

local area networks (VLANs) and other moving network topologies. “To reduce

complexities in identifying various networks using [VLANs][20].”

The limited research into modelling firewall rules and how they will fit within

SDN is fragmented. Most research falls into two categories, identifying the potential

mistakes or complexity of the proposals [21]. Dissertations such as [22] and even

Sigcomm proceedings such as [HOT SDN] often conclude with more work required or a

simple model of the structure.

Studies on SDN firewalls are extremely rare. Applicable results on studying

traditional complex firewalls and systems developed to quantify them such as [23] are

available. Combining traditional firewall studies with SDN studies that begin to step

forward in eliminating dedicated hardware firewalls that produce SDN flows [26]. This

study will then utilize firewall anomaly discovery algorithm research [27] to produce a

viable solution to moving our ports and not violating our firewall rules. Building upon

this research we have all the tools to detect our change but then require programming

constraints to add our decisions to the firewall policy and make complex queries to it

[24].

Conclusion

The literature reviewed in this paper seems to be missing a reoccurring theme.

This may be in due to the infant nature of SDN. However, this study’s use of flow tables

[31] and concepts behind running our SDN [34] is supported by reoccurring research and

www.manaraa.com

11

is well documented. The study does, however, require the most updated form of

OpenFlow. “Switches using OpenFlow 1.0 forwarding model cannot perform more than

one operation during the packet forwarding process [31].” Potentially proving paper

prototype viable, our proposed structure tests a real-world environment with firewall rule

omissions.

Research and development environments are often scaled back and redundant.

Production networks are expensive resulting in efficient network utilization being a

repeated discussion. Expanding networks and additional complexities from the increased

sized, creates problems for application developers. It has created need for sophisticated

algorithmic control across this studies network [31]. New technologies are being

proposed just to run parallel with SDN [33] or even using big data applications to run

SDN itself [31] to in turn manage and run the network efficiently [33]. In the white paper

SDN System Performance, we can see the pitfalls [37] of the hardware itself or

optimization of the APIs [36]. Protocol utilization standards such as which fields are

optional or required [38], and the overall complexity of the central logic controllers may

hinder applicable solutions [35]. Last, this paper uses all combined research and

constructs firewall models that simply call and use OpenFlow field standards [25] and

proposed OpenFlow protocol configurations [26] In doing so this study creates the paper

prototype presented for this thesis. Referring back to the ONF, on combining our

hypothesis and pseudo code can easily be done by utilizing the SET-FIELD within

OpenFlows field options [29]. Using proven implementations of other research and

development projects we were able to produce a viable paper prototype. “We modify the

controller to export an install route API to install a shadow-MAC-based label routed path

www.manaraa.com

12

to a destination [30].” Installing this route API is the final stepping stone from identifying

our rule violations, to implementing our detections in the violation, adding our new rule

in and finally expanding the flow or path our traffic will take

www.manaraa.com

13

CHAPTER III

SDN CURRENT IMPLEMENTATIONS

In this chapter we focus on first understanding SDN architecture, its uses,

proposed uses, current implementations and many of the various ways it is utilized. We

assume that the reader has a background of basic networking experience.

Why Was SDN Proposed?

Computers communicating over a mesh of networks throughout the entire globe

are a reality that was thought fantasy when the first network design was conceptualized.

Conventional networks are hierarchical in structure, built with tiers of Ethernet switches

arranged in a tree formation [4]. This design was best used when client-server computing

was dominant initially during the first public computer network adoption [4]. Static

architecture is ill suited to the dynamic computing and storage needs of today’s enterprise

servers, data centers and mirrored backups, campuses, and carrier environments [4].

Key Factors for Proposing SDN

Users are the ultimate goal for any information technology project. Several trends

in networking provide the impetus for the development of SDN technologies including

(1) dynamic network traffic patterns; (2) mobilization; (3) security and controls; (4)large

bandwidth applications;... These also provide a foundation for understanding the need

the proposed SDN Firewall solution presented in this paper.

www.manaraa.com

14

Dynamic Network Traffic Patterns

The model of communications from client to the server and back are long gone

with applications communicating with applications and cloud services communicating

with other virtual machine environments. The traffic is no longer hierarchical, which

slows down current network infrastructures based on switches and routers. In the

Andromeda project Google’s core SDN were benchmarked on throughput and speed

using netperf TCP_STREAM [43]. The results showed an approximate 300% increase in

performance that shows the direct benefits from an SDN implementation.

Mobilization

The same study of Google’s SDN network also showed the impact of

mobilization on traffic patterns. By benchmarking the total number of TCP Streams they

showed that traditional networks operate at 2 Gigabits per second throughput versus 3.5

Gigabits per second [43]. Because of the increased throughput, SDN multiplied in a

literal sense with the number of devices communicating on the same network. Streaming

efficiency also increased with SDN. Two hundred streams were monitored on a

traditional network, which performed at 1.5 Gigabits per second versus an increase in the

Andromeda SDN to 5.1 Gigabits per second.

Security and Controls

Accessing a Fortune 50 companies documentation or office work files from a

smartphone was not conceived when the first network topologies were designed. This

equivalent scenario would be Thomas Edison predicting electrical networks to handle

wind and solar power plants and the circuitry being able to handle those loads. Yet both

of these scenarios are actively being played out today with information being accessed on

www.manaraa.com

15

the go and new wind turbines being erected in several countries. The need for improved

security is one motivation for organizations implementing SDN technologies due its

logical and central control.

Using SDN to implement security reform leaves data scientists from Clemson

University and Arizona State University asking how to solve the security challenges that

will pop up with new software defined networking proposals. “One of the fundamental

challenges is to build robust firewalls for protecting OpenFlow-based networks where

network states and traffic are frequently changed [5].” If network architects can build

robust firewalls with SDN OpenFlow organizations can eliminate many conventional

downtime errors.

Voice, Television, and Big Data

Skype, Netflix, and Hadoop are applications, services and companies well known

in 2015. Bandwidth and latency concerns continue to climb as services like Netflix begin

to aggregate large amounts of traffic. Big Data applications such as Hadoop are also

bandwidth intensive and have spawned numerous projects involving the need for SDN.

Network engineers at Sigcomm propose not only using SDN, but using it with unique

SDN topologies:

These three trends taken together – software-defined networking,

dynamically reconfigurable optical circuits, and structured big data

applications – motivate us to explore the design of an SDN controller

using a “cross-layer” approach that configures the network based on big

data application dynamics at run-time [6].

www.manaraa.com

16

Policies, Scalability, and Usability

To implement a network-wide policy, IT may have to configure thousands of

devices in a large organization, from client based personal computers, to routers, switches

and servers. For example, every time a new virtual machine is brought up, it can take

hours, in some cases days, for IT to reconfigure ACLs across the entire network [4].” The

problem of building a robust firewall also falls into implementing network wide policies.

The process of a new virtual machine being brought up is a core component of this papers

problem. Dynamic policies create issues when an application is moved and begins to drop

legitimate traffic. When moving a virtual server the firewall policy should be elastic

enough to either reject the change or allow it to ensure legitimate traffic is not dropped.

This is the critical need for SDN in current legacy organizations that explored in this

paper.

SDN Architecture

To begin understanding SDN architecture the basic premise of networking first

must be understood. The primary network stack includes switches and routers that

network administrators utilize. In SDN the control plane forwards traffic to the selected

destination. The data plane (sometimes called the forwarding plane), are contained

within the hardware of switches and visible in firmware. The data plane, however, is

limited in manipulability by administrators. Since the data plane is decoupled from the

control plane in SDN, we need a communication medium to coordinate the two, which is

OpenFlow [3]. These planes build tables on the switches and routers; then sift through

designating traffic from Point A to B or C. Traditional networking has all planes

www.manaraa.com

17

implemented in the firmware of routers and switches which may be unique but conform

to IEEE standards.

Understanding the data plane and control planes we then can progress to SDN

architecture, which utilizes the same concepts but through abstraction. “This architecture

decouples the network control and forwarding functions enabling the network control to

become directly programmable and the underlying infrastructure to be abstracted for

applications and network services [7].”

In Figure 3, we can see how the SDN architecture uses the “OpenFlow” protocol.

This protocol is essential in using SDN and is a standard. The protocol is a standard

endorsed by ONF for SDN. Babara Liskov is often quoted when reviewing SDN

architecture “Modularity based on abstraction is the way things get done.” Figure 3

shows the switch hardware forwarding traffic being controlled by the control layer. The

control layer in turn is being accessed through an application layer, which communicates

what traffic it has available and needs moved.

www.manaraa.com

18

Infrastructure
Layer

OpenFlow Protocol

Control Layer

Network
Services

Networking
Services

Network
Services

Network
Services

Application Layer

Business
Application

Business
Application

Business
Application

API API API

Figure 1. Software Defined Networking Architecture Abstract

By decoupling the network control and forwarding functions, we can then begin

to program our network directly. Direct control over the network gives way to two major

key points. First, our network is now dynamically moving and adjustable giving the

network agility and verbose with network engineers being able to configure, manage and

even secure the network manually or even automatically with programs that they can

write themselves due to non-proprietary firmware or software. Secondly, we may even

move to integrating application developers into the network realm or vice versa. The

doors to programming the network are blown wide open by allowing developers to have

access to program the network to the specific needs of their application.

Decimating through this information we have gathered that the OpenFlow

protocol allows for the standard communications within the SDN architecture, the

www.manaraa.com

19

decoupling of the planes allowing programmability, direct control over our network, its

agility and potential for automation. Lastly, the most critical part of SDN architecture is

the centrally managed portion. Similar in networking when speaking physically and

logically with Ethernet traffic, we do the same with SDN. “Network intelligence is

(logically) centralized in software-based SDN controllers that maintain a global view of

the network, which appears to applications and policy engines as a single, logical switch

[7].” Managing this “logical” centralized instance leads us to the (SDN) controllers.

SDN Controllers

SDN shifts the architecture as previously mentioned into a logical centralized

instance. Coming with this instance leads to the need of a controller of sorts. The

controller or main CPU processing unit of the entire network is a control point. “It is the

strategic control point in the SDN network, relaying information to the switches/routers

‘below’ (via southbound APIs) and the applications and business logic ‘above’ (via

northbound APIs) [8].” The southbound APIs are application logic that dictates it’s needs

top down from the application layer to the control layer. In vis-à-vis the turn of the traffic

and decisions are being communicated back to the application layer. This controller

would use common interface OpenFlow and presents another common protocol open

virtual switch database (OVSDB).

The controller is like a modular plugin platform, which then runs our network

performing various tasks such as routing, balances, inventorying, and statistics. Even

though the controller is performing basic tasks, it can be extensible and made to perform

advanced tasks such as running custom code or algorithms citing new rules throughout

the network and conducting on the fly analytics. This is the feature we are interested in

www.manaraa.com

20

with solving our problem with an SDN perspective because citing new rules or

implementing our own custom algorithm is what will make our solution a viable one.

“The first SDN Controller was NOX, which was initially developed by Nicira Neworks,

alongside OpenFlow. In 2008, Nicira Networks (acquired by VMWare) donated NOX to

the SDN community (it was open sourced), where it has become the basis for many

subsequent SDN Controller solutions [8].” Basic operations of a NOX SDN controller are

displayed in Appendix A.

Concluding on the SDN controller, a major proponent of SDN open source

studies is not only the ONF but also the OpenDaylight project, which is part of the Linux

Foundation. This SDN controller runs in a Java Virtual Machine (JVM) supporting both

OpenFlow and the previously mentioned southbound API’s. Different types of SDN

controllers exist in the ecosystem. NOX is a C++ multi-threaded controller that is written

on top of a POX library, single threaded python controller, Beacon is another Java based

controller [8], and many more variations. Each type of controller has its strengths and

weaknesses; however, the first open source SDN controller was NOX. Along with

various types of controllers, we can identify weak points of the SDN controllers and all

their different versions. The larger the network the more taxing it will be on a centralized

instance possibly even bringing the entire network down if the controller is corrupted,

overloaded or simply under resourced or poorly optimized. A lightweight python based

controller couldn’t handle the load to a certain critical point. The need for multiple

controllers is then present.

www.manaraa.com

21

SDNi

In 2011, there was a technology news publication from the IEEE society

approaching a solution to managing multiple SDN controllers. Providing an interface

protocol between the controllers allows engineers to create an "interfacing SDN Domain

Controllers [9]” referred to as SDNi, which was progressively being developed by the

Internet Engineering Task Force (IETF). This allows for the scalable environment that we

can operate in larger organizations by deploying multiple SDN controllers. In Figure 2

SDNi Overview we can see how the switches and OpenFlow protocol fits within this

SDNi environment. This environment shown below is a horizontal SDNi structure. Each

switch is paired and communicating with each other on decisions being made. A single

controller could be added on top of this diagram turning it into a single controller

dedicated to controller all sub controllers, which is a vertical SDNi approach.

Figure 2. SDNi Overview

SDNi allows the SDN controllers to communicate various information details

such as “network topology, network events, user defined request information, Quality of

Service (QoS) requirements from user application request, integration infrastructure

www.manaraa.com

22

status, and more [10].” SDN controller communications as explained previously can have

horizontal and vertical designs. These designs arrived due to having one controller may

not be suitable to cover the entire network. SDNi, in turn, solves this. Further

understanding the in depth nature of SDN we must look at three more elements that

compromise it overall. The OpenFlow enabled switches displayed above in Figure 2,

OpenFlow Protocol itself, and Flow Tables. “An SDN controller communicates with

OpenFlow compatible switches using the OpenFlow protocol running over the Secure

Sockets Layer (SSL) [11].” Analyzing these switches and routers we can see how SDN

and the protocols work by decoupling the planes within the hardware.

OpenFlow Protocol and Switches

As previously mentioned in SDN Controllers section we discussed that OpenFlow

is not the only protocol on the rise in development and use, but it is one of the most

widely utilized and researched currently. OpenFlow provides the standards for the

interface on controlling the data packets. This is the main goal of the ONF foundation is

to set global standards and interoperability in place. “The OpenFlow standard also

provides a basic set of global management abstractions, which can be used to control

features such as topology changes and packet filtering [12].” Breaking down an

OpenFlow enabled switch we can segregate it into three distinct parts, the flow table,

secure channel, and the OpenFlow Protocol. In Figure 3 OpenFlow Switch shows how

these three distinct parts reside within our OpenFlow enabled switch.

www.manaraa.com

23

OpenFlow
Switch

Secure
Channel

Flow Table

OpenFlow
Protocol

SSL

Controller

Figure 3. OpenFlow Switch [25]

First we can see the “Flow Table - Tells the switch how to process each data flow

by associating an action with each flow table entry [12].” The Flow Table will be

populated with entries via allowance the OpenFlow protocol defined by a server external

to the switch. By populating this flow table we can have various entries and dictations

through policies that are enabled by secure channel. This flow table and secure channel is

where the basis of our experiment will begin.

Utilizing certain fields and actions within the flow tables we can dictate our own

programmability of the network. “Secure Channel - Connects the switch to a remote

control processor (called the Controller) so commands and packets can be sent between

the controller and the switch [12].” This is the programmability and modularity that is

often discussed when SDN is proposed. Not only can we develop specific firewall rules

or policies there are numerous activities that can be done with this programmability such

as time sensitive express lanes or even a new type of Quality of Service (QoS). The last

www.manaraa.com

24

part of the switch is the OpenFlow protocol, which we have covered is a standardized

interface for the controller to the switch. Below in Table 1 we can see the reserved ports

provided by the ONF and suggested optional ports as well.

Table 1. OpenFlow Ports

Port Name Description
Required /

Optional

ALL
This is for all ports the switch may potentially use for forwarding a packet.

Is an egress port only. Required

CONTROLLER
Representative of the channel that controls with the SDN

controller. Can be an ingress and egress port.
Required

TABLE
Beginning of OpenFlow pipeline. Valid as an output action in the

action list of a packet-out message.
Required

IN_PORT Packet ingress port, can only be used as packet output port. Required

ANY
Specialized value in certain OpenFlow syntax when no port is

called. A wild card value which we will be using for our firewall

complexities.
Required

LOCAL

Switches local networking stack and the management stack

associated with it. Both an incoming and outgoing port it enables

remote entities to interact with the switch via the OpenFlow

network.

Optional

Flow Tables

Each switch maintains an OpenFlow pipline, a virtual pipeline, which maintains

the multiple flow tables which therein contain multiple flow entries. This is how the

packets interact with the tables. The switch must have at least one table for it to be active.

“Each flow table entry has a specific action associated with a particular flow, such as

forwarding the flow to a given switch port (at line rate), encapsulating and forwarding the

flow to a controller for processing, or dropping a flow’s packets (for example, to help

prevent denial of service attacks) [12].”

A very basic way of how the Flow Table or groups of Flow Tables methodology

and mechanics work is with how they handle a short process of finding the highest

priority matching flow entry. Then it will apply instructions based off the matches. Those

instructions could be to modify the packet and update the match fields, update action set.

The update action set is what we will be using in our effort to produce a viable algorithm

www.manaraa.com

25

to reduce our firewall complexity, which will be referenced later as our set-field when

discussing the OpenFlow port.

The Update actions are set clear actions or write action instructions. One can

begin to formulate our methodology and process for achieving a certain set of algorithmic

functions to avoid moving our application into a restrictive environment eventually

crashing it by seeing this port and OpenFlow standard. It may also update metadata

within step two. Lastly, we will send match data and the actions set to the next table and

this denotes the processing pipeline.

Below in Table 2. Flow Table Components we can see the main component

entries provided by the ONF in a Flow Table.

Table 2. Flow Table Components [13]

Match Fields Priority Counters Instructions Timeouts Cookie

Further specifications on the Flow Table will be included in the Appendix A.

SDN Vulnerabilities

Like any new technology, vulnerabilities and risks are often associated with new

changes. Simply reviewing our architecture explanations we can quickly identify that a

central point such as the SDN controller would be an exceptional point of attack. An

attacker is able to compromise the controller than he is able to compromise the network

and propagate through it rapidly. “According to Ramnath Venugopalan of Intel Security

(formerly McAfee), SDN opens potential security holes, especially in connections

between controllers and network elements [14].” The controllers and switches are no

exception to traditional attacks either. Depending on which language the controller is

written in depends on the vulnerabilities associated with it, compounding on top of the

www.manaraa.com

26

risks are introductions of new risks by the flow tables and OpenFlow protocol

misconfigurations.

Physical risks include overloading the controller as previously mentioned, which

will bring down the entire network not just parts. If the demands or traffic for the network

is too large the controller may fail, dropping legitimate traffic or slowing the service to an

unacceptable level.

Conclusion

In conclusion, we have discussed aspects to why SDN was proposed, the

architecture behind SDN and our focus within the technologies. Progressing forward we

can take away key points such as one of the proposals for SDN was Security and Policy

based decision making which aligns to this studies proposed problem of decision making

for changing our application from HTTP to HTTPS. Not only is this proposal a widely

regarded one, it is the proposal we will be focusing on.

Trying to implement a robust firewall design is complicated; however once done

successfully our hypothesis of it reducing the complexity of our firewall environment will

prove beneficial in new ways that were unrealized. The SDN architecture summed up is a

central logical location versus how switches use to see when the data packet arrived at the

switch, and then the firmware would send it off to the destination with its rules built in.

Network engineers had no control over these rules and that is what SDN is enabling.

“"On a network running OpenFlow, computer scientists can add to, subtract from, and

otherwise meddle with these rules [3].”

The rules that we will be meddling with are located within the SDN controller and

switches. The OpenFlow protocol and flow tables are what will allow us to change our

www.manaraa.com

27

landscape and fulfill the solution to our problem. Moving an application server when

doing a patch or adding a port can break the entire application. If we were able to

somehow have the programmability of a network at our fingertips we could prevent this.

This problem is widely recognized within the SDN community; however, it is slightly

different then the thesis problem of updating an entire traditional environment over to an

SDN environment to solve development problems. This thesis will achieve this by diving

into the SDN architecture, down to the controllers, down to the switch, and into the flow

tables themselves. Once this project has proposed the solution it will traverse back up to

the controller level and have the SDNi level roll out this projects proposal.

www.manaraa.com

28

CHAPTER IV

FIREWALL ARCHITECTURE

Discussing firewall architecture this thesis will focus on select items including

how traditional firewalls work briefly, current real world implementations that are

anonymous due to the sensitive nature of firewall architecture, following in parallel of

anonymous data current security practices, policies, and standards and closing with

firewall implementation options with SDN.

Firewalls essentially have a narrow job list which includes closing off ports,

applying certain routing rules to packets and preventing large attacks on the network.

They also prevent large illegitimate traffic from getting out if there is a compromise

within the network. “Traditional firewalls can also be expensive to operate, especially if

you need to supplement them with additional security technologies [15].” Firewalls are

not only expensive to operate, but the overall costs are often not efficiently recorded as

well.

Overall costs are referencing bureaucracy in developing alongside firewall teams

such as the time it would take to request a firewall change. In smaller environments one

or two individuals usually do the changes; however, working with large organizations

and application developer may have to wait an unacceptable amount of time until he or

she gets the desired firewall change. Not only does this study utilize technology to reduce

risk and complexity, it also should eliminate unnecessary red tape bureaucracy and

allowing organizations to move with agility and ease.

www.manaraa.com

29

Progressing forward we will discuss how current firewalls are being used, phased

out and how we can use SDN to our advantage solving the problem listed above.

Firewalls can be grouped into traditional, distributed, embedded and others. Our

hypothesis we will focus on distributed firewalls and how they create certain risk

domains within an organization.

Abstract Firewall Architecture

Starting off with firewall architecture we can examine Figure 4. Single Firewall

Abstract.

Internet

Firewall

Switch

Client

Legitimate
Traffic

Illegitimate
Traffic

Illegitimate

Traffic

Figure 4. Single Firewall Abstract

Above we can see how the client has legitimate traffic that is traversing usually

through a switch or a router then hits our single firewall then communicates to the

Internet. This border firewall will be combined into our Flow Table in SDN. Therefore

the complex decision making logic will reside within the field settings of our SDN and

not a traditional tree based access control language border firewall. Even at the level of

users with home networks they still have software firewalls behind the border hardware

firewall at the router or switch level.

www.manaraa.com

30

This divides the firewalls into two types of categories, hardware firewalls and

software firewalls. In Figure 4, we are displaying a hardware firewall. “Hardware

firewalls are normally situated between the network and the connecting cable/modem.

These are external hardware devices usually called Network firewalls [16].” Finding the

solution to our problem, we see in SDN how traditional hardware or network firewalls

are converted over to a software firewall while still maintaining its status as a hardware

firewall.

The programmability of an SDN allows for us to make an elastic robust firewall

for communicating traffic across our network. “Software firewalls are basically software

components that are internal to the computer system. They work hand-in-hand with the

computer’s operating system [16].” Working with the computers operating system

software firewalls are designed to protect the client they reside on. Using the single focus

and expanding it throughout our SDN by programming our flow tables will provide a

unique firewall solution.

Types of Firewalls

 Firewalls were one of the first inventions of security when the Internet was

brought into existence. The Internet grew and along with it so did the types of firewalls.

Cautiously proceeding, material referenced in 1999 is still relevant today, hinting the

need for new technologies on protecting our networks.

Packet Filtering

“Filtering firewalls screen packets based on addresses and packet options. They

operate at the IP packet level and make security decisions (really, "to forward, or not to

forward this packet, that is the question") based on the headers of the packets [17].”

www.manaraa.com

31

Packet filtering takes place at the third layer of the OSI model of networking. At the IP

Internet Protocol (IP) Layer we can afford to have a robust implementation because this

is present in nearly every device on the network such as routers, switches, wireless points

and much more.

Expanding upon Figure 4 we can see in Figure 5 Filtering, how the firewall

examines characteristics of the packet and then matches them to an accept policy rule or

reject. If a match is not found typically the firewall will refer to its own Quality of

Service policy. In exploring our options for certain firewalls we have three distinct

groups. In Figure 5 the packet characteristics are source Internet protocol (IP) address,

source port, destination IP address, and destination port. Filling the last spot is the IP

Protocol, which could be Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP). The figures begin to dive deeper into the SDN framework for the study’s

proposal. Figure 5 shows the standard filtering logic that will have to be dynamically

applied inside the SDN proposal. The same permit and deny logic will not be simple and

concise within the SDN switch. Taking into account numerous types of filtering the

proposal begins to become complex.

www.manaraa.com

32

Internet

Firewall

Switch

Client

Legitimate
Traffic

Illegitimate
Traffic

Illegitimate
Traffic

Outgoing Packet At Firewall

Packet:
Source IP Address

Source Port
Destination IP Address

Destination Port
IP Protocol

 Rule
Match?

Deny Rule Found

Drop Packet

Permit
Rule

Found

Forward
Packet

No
Match

Firewalls QoS
Policy

Figure 5. Filtering

www.manaraa.com

33

Packet filtering can then be divided into three more subsections listed below.

Table 3. Packet Filtering Subtypes

Packet Filtering Subtypes

Stateful Inspection

Similar to dynamic packet filtering adding

on the granular inspection of data contained

within the IP Packet. This gives the

Firewall the ability to see what is in the

packet, which may prove useful when

implementing our SDN.

Dynamic Filtering

“Dynamic packet filtering tracks the

outgoing packets it has allowed to pass and

allows only the corresponding response

packets to return. When the first packet is

transmitted to the public network

(Internet), a reverse filter is dynamically

created to allow the response packet to

return. To be counted as a response, the

incoming packet must be from the host and

port to which the outbound packet was

sent.” [18]

Static Filtering

Most common type of filtering, displayed

in Figure 5. This filtering must be manually

changed.

Application – Gateway Firewalls

Gateway firewalls, like packet filtering, determine whether or not a connection

will be made through it also determines how each connection should be made. This

information is crucial for building the study proposal. The gateway firewalls logic is the

closest firewall rule logic that will apply to the thesis proposal. “This type of firewall

stops each incoming (or outgoing) connection at the firewall, and, if the connection is

permitted, initiates its connection to the destination host on behalf of whoever created the

initial connection. This type of connection is called a proxy connection [18].” In short

www.manaraa.com

34

this process should be transparent to the user and is acting merely like a simple proxy

server that provides to specific applications. This type of firewall is what closely aligns to

our SDN hypothesis. “By using its database, which defines the types of connections

allowed, the firewall either establishes another connection (i.e., permitting the originating

and destination host to communicate) or drops the original connection [18].” This type of

firewall ensures protocol conformance and can even inspect individual sessions and

decide to drop packets based on information in the headers or payloads.

Circuit Level – Gateway Firewalls

Combining gateway firewalls to the study proposal circuit level gateway firewalls

will contribute to the proposal. These firewalls operate at the session layer of the OSI

Model. “They monitor TCP handshaking between the packets to determine if a requested

session is legitimate [19].” Network Address Translation or NAT is a large part of circuit

level gateway firewalls. This part of the firewall will allow for a public IP address at the

firewall level and internal private IP address therefore traffic being routed and possibly

remote controlled into the environment is not exposed to potential intruders.

With the three types of firewall architectures explained there are stateful

multilayer inspection firewalls which combine the aspects of all the other types of

firewalls and filter packets amongst the transport layers, network layers and application

layers. The firewalls could allow packets to pass through individuals, direction

connections or the algorithms they choose to recognize at the application layer instead of

specific rules.

www.manaraa.com

35

Multiple Firewall Environments

After discussing the different types of firewalls and how their overall architecture

and how our SDN is implemented, we begin to turn towards the crux of our problem.

Multiple firewall environments are present in nearly every large organization and

corporate network. Corporate firewalls are usually separated out into multiple risk

domains. For example the company’s intranet would have a firewall separating it

between a low risk domains then another firewall separating the low risk domain with a

high risk domain which is usually outward facing towards the internet.

On top of these risk domains we would have separate instances of local firewalls

for different uses and applications. “The consistency between those firewall policies is

crucial to corporate network security. However, the managing of these has become a

complex and error-prone task. Bad configurations may cause serious security breaches

and network vulnerabilities. In particular, conflicting filtering rules lead to block

legitimate traffic or to accept unwanted packets [20].”

Understanding the complexity of these problems we need to thoroughly review a

proposed abstract environment. The environment in Figure 6, which we have named

Firewall Risk Domain Problem, is based off a real world model provided by a large

American Fortune 500 firm.

www.manaraa.com

36

Shared Application Server Shared Application Server Shared Application Server

Low Risk Domain

Local Firewall

Local
Environment

Intranet Firewall Between
Domains

Shared Web Server Shared Web Server

High Risk Domain

App to App Call

HTTP > HTTPS
Changed Port

80 to xxx

Webport xxxx

Firewall Between
Domains

Web Server Web Server

User on Internet

Load Balancer

Load Balancer

 Figure 6. Firewall Risk Domain Problem

Abstracting this real world setup we will focus on using this firewall architecture

as the basis for our research problem. First, we must understand the flow of data within

our network and firewalls before addressing the problems it presents.

In Figure 6, we have five environments starting at the lowest level in which we

first see a local environment. A good example for a local environment would be a facility

or offices that are offsite from a headquarters of an enterprise or organization. This local

facility has chosen to be behind a local firewall for purposes that align with their policies

and usually contains computers, servers of their own, printers and other devices operating

on the network.

The traffic moves from the local environment to the load balancer via a web port

and also a rogue user outside the firewall. This user is shown because even though the

www.manaraa.com

37

firewall is in place a user may find a way to be accessing the intranet load balancer not

through their firewall. Firewall configuration errors could lead to major attacks;

misconfiguration could lead to applications being reduced all traffic being dropped; or

entire domains could be restricted or error prone. “One challenge is that large networks

usually have several firewalls scattered across the network each with their own firewall

policy. This makes designing and deploying an effective firewall policy difficult [20].”

Figure 7. Close Up Intranet

In a more detailed view in Figure 7 we can see we have the corporate intranet

shared with a load balancer and two shared webservers. The load balancer could be a

cisco blade or any other commercial load balancer along with the web servers being java

virtual machines or even windows web servers running Internet Information Services

(IIS). A special note to take in is the service from one shared application server is

showcasing traffic with an application-to-application call. In a real world example when

changing over the HTTP to HTTPS we change the ports from 80 to 443. “Therefore,

unawareness of policy conflicts and errors can significantly increase the risk of policy

inconsistency thus increasing network vulnerability [21].”

www.manaraa.com

38

Not knowing the app-to-app call which is very easy to do could cause a network

vulnerability or error if the application developer did not know this was implemented.

This would be an easy miss for consultant developers who inherit completed systems and

begin working on them for the first time with organizations who have had the

applications in maturity or retirement age. “An error in a firewall policy can be a wrong

definition of being legitimate or illegitimate for some packets. This can lead to a firewall

either accepting some malicious packets, which consequently creating security holes in

the firewall, or discard some legitimate packets, which consequently disrupt normal

business [22][23].”

This problems complexity would be further compounded if we considered both

Wide Area Networks (WAN) and Local Area Networks (LAN). For simplicity we will be

assuming everything is residing on a Local Area Network. However, we will take into

account how complex the actual rules for the firewall are. These can be so complex that

Avishai Wool dedicated his entire paper for developing a quantitative analysis for

firewall rule complexity: “RC = Rules + Objects + Interfaces(Interfaces -1)/2, where RC

denotes rule complexity, Rules denotes the raw number of rules in the rule set, Objects

denotes the number of network objects, and Interfaces denotes the number of interfaces

on the Firewall [23].” Not even getting out of the intranet environment we can begin to

see the complexity of the environment.

Progressing upward we will pass through another firewall separating out intranet

and our low risk domain. The traffic going from our web servers in the intranet and the

application servers in the low risk domain are bidirectional web service calls. This is an

important distinction due to our policies on the firewall separating out these two

www.manaraa.com

39

environments. Within the low risk domain we have three shared application servers

running various applications within their environments.

Last we have the high-risk domain with one-way traffic coming into the low risk

domain separated by our last firewall. Within the high-risk domain we have two web

servers and a load balancer. A great example for this environment would be of a user

trying to use the same application within the intranet or low risk domain but is currently

off campus and travelling mobile. Therefore the user would be high risk because they are

coming from our last environment the Internet.

Analyzing and trying to resolve this complex environment is a fairly traditional

problem since the inception of the Internet. Expert systems have been developed and in

use for a long time and they generally work by using a database with an engine to make

sure there is uniform policy and decisions being made. “This goal is usually achieved by

combining a logical inference engine with a knowledge base. The information in the

knowledge base contains a set of known facts and a set of production rules that allow if-

then inferences on the facts and other acquired information [24].” The critical point of

expert systems is there is not a defined way in our previous example to prevent an

application developer changing the HTTP to HTTPS and breaking the entire application

because of an unknown policy. The expert system is not interested what the application is

doing only if it meets the firewalls requirements.

www.manaraa.com

40

Table 4. Example of Firewall Rules

Protocol Source IP Port
Destination

IP
Port Action

UDP 192.168.10.1 80,001 10.1.1.12 80,100 Deny

TCP DMZ 443 Any Any Allow

The policy matrix could be a table format or simply algorithm saying the example

of a destination for this packet is the Internet and the source is DMZ which is allowed on

certain ports like 80 and 443 but on intranet is allowed for all ports. Instead of merely

throwing away legitimate traffic which an expert system would do if we changed our

HTTP to HTTPS SDN will allow us to be robust enough to save the application

developer from crippling the system with an outage.

Conclusion

The complexity of multiple firewall organizations like the one described above

proves to be a problem that is pressing for traditional networks. Reviewing the original

architecture of one firewall and one entry and exit point we noted that the basic premise

of firewall is to allow or deny traffic. We defined the difference between a hardware

firewall which is usually a network firewall sitting on a router or between the hardware

servers.

Software firewalls we analyzed are specifically designed for the client they are

residing on such as a windows computer. We analyzed how the firewalls operated with

the three different types including filtering with subsets of static filtering, dynamic

filtering and stateful inspection. Adopting the stateful inspection methodology we will

push forward towards our SDN solution combining it with our second firewall type

application gateway firewalls.

www.manaraa.com

41

These modular and programmable options push us in the direction of controlling

the network to a level where we can fix our exuberant problem of firewall miss

configuration along the lines with application developers. Last type of firewall we

discussed was circuit level gateways, which utilize the network address translation area.

Using this critical information we then thoroughly analyzed our real world problem being

presented in Figure 6. Examining the risk domains and how the organization is setup we

must provide a solution to where if we move an application server, web server, or simply

change or HTTP protocol to HTTPS it does not crash our system due to unknown

firewall policy and rule. “In this case, the filtering rules and VLANs need to be well

defined such that no desired traffic is blocked before reaching its destination and no

undesired traffic is allowed to flow through the various firewalls in the distributive

environment [20].” Publications only a few years old are proposing future work for this

very problem however they are using expert systems with traditional network topologies

to try and solve it. Instead we are proposing to upgrade the traditional network to a

software-defined network which potentially solves our problem and provides more

benefits than originally intended that is discussed in our analysis chapter.

www.manaraa.com

42

CHAPTER V

SDN REDUCING COMPLEX ARCHITECTURES

In Chapter 4 we have reviewed basic firewall architectures and a solid foundation

of our real world problem moving protocols or traffic amongst different risk domains,

firewalls, and policies. Chapter 5 will focus solely on defining how we will achieve

upgrading our traditional or legacy network example into an SDN network. Continuing

forward we will propose how the SDN will handle HTTP being switched to HTTPS and

prevent application developers from bringing an application down due to unknown rules

and firewalls. “Researchers can control their own flows - by choosing the routes their

packets follow and the processing they receive. In this way, researchers can try new

routing protocols, security models, addressing schemes, and even alternatives to IP [25].”

With Figure 6 being our proposed problem topology, Figure 4 will be our proposed

solution topology.

www.manaraa.com

43

SDN Topology Upgrade

We begin with an analysis to understand how the traditional environment has

been converted into a hypothetical SDN environment in Figure 7.

Shared Application Servers

Low Risk Domain

Local Facility
Environment

Intranet

Shared Web Server
VM

Shared Web Server
VM

High Risk Domain

HTTP > HTTPS
Changed Port

80 to xxx
No Longer
Needed?

Webport

Shared Web Server Shared Web Server

SDN Switch
2

SDN Controller
1

SDN Switch
1

SDN Switch
3

SDN Controller
2

Control
Plane

Control
Plane

Forwarding
Plane Application

To
Application

Call

SDNi

SDNi

Forwarding
Plane

Control
Plane

SDN Switch
4

Forwarding
Plane

Control
Plane

Internet

Figure 8. SDN Topology Upgrade

www.manaraa.com

44

Using Figure 7 and others we will show how to solve the problem of migration

and benefitting the developers when we preserve the nodes reachability. All firewalls in

this Figure 7 have been absorbed by the OpenFlow switches. “SDN switching equipment

supports flow routing tables (Flow Tables) in which processing rules for packet flows are

installed. The final step of migration from a traditional topology to an SDN paradigm is

installing flow rules into OF switches flow tables [26].”

Comparing to Figure 6 we can see all the firewalls have been aggregated into

Flow Rules, which will be explained further on. This topology shows that we have added

two SDN controllers to the original environment, removed two of the load balancers

because the SDN switches act as load balancers with the flow of traffic controlled, and

added the four SDN switches themselves. Noted on the graph we can see the forwarding

planes denoted between each of the switches.

Coming from the SDN controller we can see the control plane being used within

the secure channel that was shown in Figure 3. How the provisioning of firewall policies

and sub policies within we can think of each risk domain (intranet, low risk, high risk) as

a subnet or vice versa. The overall topology of the network such as lattice, star, ring,

graph, dimensional cube, etc. is not taken into account for this working example. Our

only focus is this small slice of the overall real world example and does not include the

rest of our network that would be interlaced with extra switches, servers, controllers and

clients. We are merely showing that a problem such as HTTP converting over to HTTPS

would not bring the entire network down with our solution. All the servers listed on the

figure are Virtual Machines (VM), which means they can be easily moved from one

domain to another, can have policies changed within the server or simply moved to a

www.manaraa.com

45

different IP address. In traditional environments the movement of servers is not chaotic;

most changes will be done via the application development side of our problem. We now

have a clear understanding of how our environment would look with our topology

displayed and explained.

Flow Tables and Rules

Focusing on the firewall rule policies themselves we will not list out all rules and

matches. Great example of rule policy logic that we can convert into the flow table below

is from Modeling and Management of Firewall Policies [26].

In their paper, they provide five definitions for policy rule logic. Definition One

aligns to the proposal of disjoint fields which are in turn if the server was looking for IP

A to IP B it does not equal the corresponding flow within the SDN table. Definition Two

provides the complex logic of meeting the flow table match. Definition Three would be

in where the decision and advanced querying within SDN would be vital. The rule

dictates if IP A is not matching our flow table but has a partial match communicating to

another SDN controller for inclusive matching then IP A has changed while IP B or the

superset IP has remained the same. This is applicable to our proposed problem

specifically of moving IP A or Port 80 to HTTPS on Port 443. Definition Four would be

rule logic for checking our SDN proposal all the way end to end to see if the firewall flow

has been broken in another risk domain. Definition Five builds the firewall flow outward

towards the ending destination. If rules one through four have been a match, the SDN

must begin to build the flow creating an end-to-end flow by correlating with previous

flows in place. All detailed formulas can be found in Table 5.1.

www.manaraa.com

46

Table 5. Policy Rule Logic [26] [27]

Definition

Number

Description

Definition

1

Definition

2

Definition

3

Definition

4

www.manaraa.com

47

Definition

5

With the programmability offered by SDN an organization can slowly create

small trial environments to see how they might affects their overall network and

production environments. Creating more and more of these pocket environments will

eventually lead to the overall network being converted into a software defined network

instead of a traditional.

Many different versions of pseudo code have been presented traditional firewall

policy research. For example, “If filtering rules on two different routes between subnets

are different, i.e. if an end point on one route is reachable and on the other is not, the

warning message “Conflict Found” is displayed and computation stops” is example

pseudocode from Bob, et al. [26], which has a similar goal to this study. However, what

most papers fail to identify is the pseudo code and process by which we should be using

our rules.

www.manaraa.com

48

Pseudo Code Logic Proposal

BOOLEAN Change Application Network (Application){

 IF (App.HasChanged) AND {FlowPolicy.Firewall =

FlowPolicyAcceptance

 Then

 Controller.UpdateFlowPolicy

 Controller.SwitchFlowTableUpdate

 RETURN TRUE;

 ELSE IF FlowPolicy.Firewall != FlowPolicyAcceptance

 THEN

 App.FirewallHybrid

 Controller.UpdateFlowPolicy

 Controller.SwitchFlowTableUpdate

 RETURN TRUE;

 ELSE

 Controller.DoNotUpdateFlowPolicy

 Controller.SwitchFlowTableUnchanged

 RETURN FALSE;

Mathematical Proof Pseudo Code

𝑓(𝐴𝑝𝑝1): 𝑆𝐶1∆(𝑁1 ∨ 𝐹1) → 𝑓(𝑃𝐶𝑌): 𝑆𝐶1 ∩ 𝐹1 = 𝑃𝐴 → 𝑆𝐶1∆(𝑆𝑊1 ∧ 𝐹1) ~ 𝑃𝐶𝑌

= 𝑃𝑅 → 𝑆𝐶1(𝑆𝑊1 ∧ 𝐹𝑥𝑁) = (𝑃𝐴 ∧ ∆𝑆𝐶1) ~ 𝑆𝐶1 ∩ 𝑄𝑜𝑆

→ 𝑆𝐶1(𝑆𝑊1 ∧ 𝐹2)

Above in our pseudo code proposal, this study proposes an application created

and running Java or C++ on the controller. This application checks for the change in state

of the applications currently listed in the controller and communicating on its network.

The network is defined as the domains previously discussed with intranet, low risk

domain and high risk domain. If an application listed on the controller presents a change

as proposed in Figure 7, the proposed application of this study will follow this logic.

First, the program has a Boolean if an application has changed in its listing and

the change meets the flow rules and firewall rules in the form of flow policy acceptance

on the network, it will update the controllers table and update the switches table which

contain both the flow rules and combined firewall rules returning a true value. Else if, the

www.manaraa.com

49

application plans to create a move that does not present a policy acceptance it will call the

function App.FirewallHybrid that is outlined abstractly in Table 5 to create the proper

flow rules updating the policy on the controller and the flow table on the switch.

Last, if none of the criterion meet the designed specifications and terms of quality

service it should return a false, not changing or updating the controllers flow and switch

table, preventing the changed application flow to be interrupted and the application

crashing. The Mathematical proof is an abstract of the pseudo code outlining similarly.

Network 1

Firewall 1

A
P
P
L
I
C
A
T
I
O
N

Network 2

Movement

Firewall 2

Due to planned or
unplanned movement,
the application server is

moved into a new
tiered network and

does not carry over the
firewall policy

Network 2

Firewall Hybrid

Hot Fix Change

A hotfix change has to
be implemented to
correct application

usability to users. This
can cause many

downtime hours.

Problem

Network 1

Firewall 1

A
P
P
L
I
C
A
T
I
O
N

Movement

Application team or
shared environment
owner submits the
move to the SDN

controller.

Network 2

Firewall Hybrid

Accepted Rule Propagation

Using Set-Field the SDN
controller either adds in
exception to the second

firewall or rejects the
move.

Solution

SDN Controller

Reject Policy Propagation

Figure 9. Flow Controller Logic

www.manaraa.com

50

In Greg Ferro’s essay SDN Use Case: Firewall Migration in the Enterprise [28]

he also proposes flow migrations with traditional networks. However, comparing to our

research with Greg’s is proposing a logical step-by-step migration of each firewall. “Now

you have forced the flow over to the alternate firewall while other flows continue to

traverse the old firewall.” While this API has not been developed, it shows this study is

not the only approach combining SDN and firewalls. Our method also proposes that

application developers not migrate over single firewall rule policies, but upgrade pieces

of the network with SDN all at once.

How do Flows, Flow?

With our top-level logic explained we will now briefly review how the OpenFlow

Switch provides MAC forwarding and IP Forwarding. The example provided by the ONF

is in Figure 7.

www.manaraa.com

51

Flow Tables

Control
Frame

Ingress VID

MAC
Learning

ACL

L2

To Controller

ETH_DST
ETH_TYPE

IN_PORT
VLAN_VID

IN_PORT
VLAN_VID
ETH_SRC

Traffic Is
Metered

VLAN_VID
ETH_DST

Protocol
Filter

ETH_TYPE
ETH_DST

ARP

IPv4

IPv6

IPV4_DST

IPV6_DST

Group Tables

ARP / ND
EXCEPTION

Next Hop
Entries

L3ECMP
Entries

Flood Entries

L2 Mcast
Entries

Egress Port
Entries

Select

INDIRECT
FF (opt)

TTL
Exception

ALL

INDIRECT

ALL

Figure 10. Flow Table Logic [29]

This shows how the controller has the controlling characteristics based on the

older version of the OpenFlow protocol. This is a common standard for bridging and

forwarding so the descriptions and characteristics are well known. However, as noted in

the figure the control frame has not been merged with access control lists table, the key

feature we should take away from Figure 10. We can now add in matching rules to the

flow table to automate our policies. Our architecture in Table 5 creates the topology

shown below in Figure 11.

www.manaraa.com

52

Simplified Flow

Facility User
192.168.1.170

Host A
aa:aa:aa:aa:aa:aa

Switch 1
11:11

6 18

Match Action

Source IP = *
Source IP =

192.168.1.50

Source IP = *
Source IP =

192.168.1.170

Destination Mac =
33:33

Forward to Port 18

Destination Mac =
aa:aa

Forward To Port 6

Switch 2
22:22

7 29

Match Action

Source MAC = *
Destination MAC =

33:33

Source MAC = *
Destination MAC =

11:11

Forward To Port 29

Forward to Port 7

Switch 1 Flow Table Switch 2 Flow Table

Switch 1
11:11

8 21

Match Action

Source IP = *
Source IP =

192.168.1.50

Source IP = *
Source IP =

192.168.1.170

Destination Mac =
bb:bb

Forward to Port 21

Destination Mac =
11:11

Forward To Port 8

Switch 3 Flow Table

Ect

Figure 11. Flow Topology

 Using Figure 11, we can see an example of how the MAC address is being issued

by the SDN controller with our Firewall policies to complete an end-to-end flow. This

end-to-end flow design is an example how we can achieve our goal with SDN and

firewall rules being less complex. As Eric Rozner said, “The MAC address rewriting

scheme leverages the fact that OpenFlow-compatible switches can rewrite addresses in

the data plane at line rate [30].” This means we are able to drive that packet at line rate

into a particular path with the rules we subject from the ingress port and the egress port.

We can even begin to write rules corresponding to the hypervisor on the switches with

the virtual hosts like our shared webservers and shared application servers as seen in

Appendix A examples.

www.manaraa.com

53

CHAPTER VI

DID IT WORK?

Hearing the system is down after a patch is every developer’s worse nightmare in

a production environment. The purpose of this thesis proposes a solution to this problem

of complex and vague firewall policy environments by implementing SDN. Did we

succeed at preventing a critical incident with the study prototype? The answer is, yes,

theoretically, and inconclusive in a large organization.

This thesis has proposed the pseudo code with the firewall programmable logic in

Table 5, which should, in theory, produce solution similar to Figure 11 flow table. This

flow table would then follow the general applicable steps provided in Figure 8 to properly

route our HTTP to HTTPS while checking for rule violation and integrity along the way

with Table 5 logic. Also for local firewall searches this study will use the local firewall

search algorithm in Appendix A. We also show that we can program the flow tables to

prevent the traffic from dropping with SDN the end-to-end logic flow. However, the

number of flows that a switch can store is limited by the hardware itself. Another limiting

factor is getting switches with OpenFlow 1.3 or later versions enabled on them. Vendor

sentiment has been against creating an open environment because they would like to

convert OpenFlow to their own proprietary platforms. “Standards have been a lively part

of the SDN debate, but that discussion has been focused more on how forwarding is

programmed into individual network devices.” [32]

www.manaraa.com

54

SDN Extended

We have started off explaining the top levels of SDN. We examined why SDN

was originally proposed ranging from traffic patterns to our problem of security and

controls. SDN will continue to evolve as the technology is still in its infancy and the

needs are growing for it every day. It has spawned numerous other technologies and

projects running in parallel infancy and growing such as Network Functions

Virtualization (NFV). “Whereas NFV focuses on network platform virtualization, SDN is

focused on network virtualization [33].”

Our proposed solution today might be outdated tomorrow by functions served up

in NFV. Gathering the updated and most recent data, the best conclusion is to participate

with leading groups such as the ONF. “Leading standards groups like the European

Telecommunications Standards Institute (ETSI) is already devising ways to unify SDN

and NFV monitoring data [34].” Expanding even further on the rapid pace of SDN

concepts including NFV, this study started off in April, 2013. One year into writing this

thesis the subject of running an SDN network efficiently came about.

Understanding SDN and the proposal’s limitation understands that every

connection in the network is a flow. On top of the flows we are adding firewall rule logic

creating a firewall flow. This would mean thousands upon thousands of flow entries in a

moderate to large network. We mentioned previously that the limitations of the hardware

are one obstacle; however, even running the network that large itself would take a

program equally if not greater in mass and complexity. “But exactly how will network

management accomplish this feat? Curiously enough, the answer is Big Data [34].” As

we mentioned in Chapter 3 a driving force for SDN was Big Data applications, however,

www.manaraa.com

55

ironically it seems we need Big Data applications to run the network of Big Data

applications.

Explaining through the concepts of the SDN controller, we have noted several

different types of controllers. While we didn’t select a specific controller for future

research it should be noted NOX was the original OpenFlow controller. “NOX is the

original OpenFlow controller. It serves as a network control platform that provides a

high-level programmatic interface for management and the development of network

control applications [35].” We covered how the application layer, the control layer and

infrastructure layers role are fulfilled with the SDN architecture and eventually explored

SDNi.

In our SDNi model, it should be noted that we took an East to West approach with

our protocols determining the SDNi. This means the controllers communicate with each

other and base their decisions off the connections and peers. However, there is a vertical

approach where a row of SDN controllers is in turn controlled by one SDN controller that

sits on top of the stack. This one controller will then issue commands in a decomposition

method controlling the network as a whole. “The master controller has a global view of

the network across all connected SDN domains and can orchestrate the configuration in

each domain [36].” We chose the horizontal approach because…

We integrated our designs into the OpenFlow protocol that is a decoupled design

with the control plane and data (or forwarding) plane separated. The controllers in this

design utilize this control plane in the secure channel to issue commands and our

networking flow rules. While the clients and hosts received and issues these commands

from the flow table on the forwarding plane. This study shows the ports with the protocol

www.manaraa.com

56

provided by the ONF manage the switches and communicate with the controllers with the

fields All, Controller, Table, In_Port, Any, and Local which have subfields. Briefly

describing the SDN vulnerabilities should be expanded upon in future research. Very

little is discussed about the current limitations of the flow table design and the hardware

limitations behind it as well.

Future Work

The main contribution of this study is using the firewall logic in Table 5 and

combining it with psuedocode to provide a flexible, misconfiguration-tolerant SDN

firewall. A real-world implementation of the paper prototype could use a NOX C++

controller; create flow tables with firewall rule logic added into the set-field to ensure the

application does not drop due to not adding in a rule allowing for traffic on port 443. We

can implement firewall policies and ACL’s by programming the SDN controller and

switch. The policies and logic tree matrixes would work at a top level logic inside the

SDN controller communicating to the switches flow table. This means the decision

making process would start from the horizontal SDNi chain of controllers and work

downward towards the switches. Future work should consist of research into

manipulating the set-field option within SDN. “While not strictly required, the support of

rewriting various header fields using Set-Field actions greatly increases the usefulness of

an OpenFlow implementation [13].”

This Set-Field option is what allows us to apply our modifications to the

outermost header of the packet and VLAN header as well. Creating a simple forward

flow firewall policy function we are able to forward packets based on simple logic trees.

However, despite the scalability is built into the SDN architecture, in practice hardware

www.manaraa.com

57

limitations may be reached around four thousand flow tables [37]. Depending on the

usage of CPU and memory with the controllers and switches depends on the maximum

number of flows a developer could achieve.

A large research project should be undertaken with the SDN firewall proposals.

There are many excellent ideas and proposals but nothing substantial to initiate an

aggregation of project papers and developers to pursue this solution. This thesis should

spawn a research initiative to begin solving the complex logic trees and limitation of the

SDN switches and their number of flow tables and policies. Hongxin Hu from Arizona

State University said, “The goal of this work is to design and develop a systematic

solution for building reliable firewalls that enable effective network-wide access control

in SDNs [38].” The research they are presenting is how to configure firewalls within

SDN environments first and then optimize the firewall after the implementation.

Conclusion

This study proposes future work of developing a SDN solution for traditional

networks that incorporate firewall rules into the flow tables. One application dedicated to

the monitoring of this would be created with the outline of the pseudocode and placed on

the SDN controller. Using the OpenFlow protocol and SDNi, the controller would be able

to make firewall access decisions automated for basic or advanced scenarios.

www.manaraa.com

58

REFERENCES

[1] ONF Overview., “Open Networking Foundation," [online] 2014,

 https://www.opennetworking.org/about/onf-overview (Accessed: 03 September

 2014).

[2] Member Listing., “Open Networking Foundation," [online] 2015,

 https://www.opennetworking.org/our-members (Accessed: 03 September 2014).

[3] K. Greene., MIT Technology Review," [online] 2014,

 http://www2.technologyreview.com/article/412194/tr10-software-defined-

 networking/ (Accessed: 03 September 2014).

[4] "Software-Defined Networking: The New Norm Of Networking” Open Network

 Foundation. April 13, 2012. October, 2014

 <https://www.opennetworking.org/images/stories/downloads/sdn-

 resources/white-papers/wp-sdn-newnorm.pdf>

[5] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. “FLOWGUARD:

 building robust firewalls for software-defined networks. in Proc. Hot SDN ‘14

 (SIGCOMM '14), 2014, pp. 97-98.

[6] G. Wang, T.S. Eugene Ng, A. Shaikh. “Programming your network at run-time for

 big data applications. in Proc. Hot SDN ‘12 (SIGCOMM '12), 2014, pp. 103-104.

[7] Software-Defined Networking (SDN) Definition., Open Networking Foundation,"

 [online] 2015, https://www.opennetworking.org/sdn-resources/sdn-definition

 (Accessed: 09 September 2014).

[8] What are SDN Controllers?., SDX Central," [online] 2014,

 https://www.sdxcentral.com/resources/sdn/sdn-controllers/ (Accessed: 10

 September 2014).

[9] Steven Vaughan-Nichols, "OpenFlow: The Next Generation of the Network?"

 Computer, August 2011.

[10] H. Yin, H. Xie, T. Tsou, D. R. Lopez, P. A. Aranda, R. Sidi. “The case for SDNi

 SDN controller interconnection. in Proc. IETF ‘12 (The IETFJ Journal '12), 2014,

 pp. 84-89.

www.manaraa.com

59

[11] W. Stallings. “Software-Defined Networks and OpenFlow.” The Internet Protocol

 Journal, vol. 16, pp.1-8, May. 2014.[12] IBM. “OpenFlow: The next generation in

 networking interoperability. Internet:

 http://public.dhe.ibm.com/common/ssi/ecm/qc/en/qcw03010usen/QCW03010US

 EN.PDF, May. 01, 2011 [Oct. 10, 2014].

[13] "OpenFlow Switch Specification” Open Network Foundation. October 14, 2013.

 October, 2014 <https://www.opennetworking.org/images/stories/downloads/sdn-

 resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf>

[14] InformationWeek. “Beware SDN Security Risks, Experts Warn”

 http://www.networkcomputing.com/networking/beware-sdn-security-risks-

 experts-warn/d/d-id/1234667?, Feb. 12,2014 [Oct. 16, 2014].

[15] Dell. “How Traditional Firewalls Fail Today’s Networks – And Why Next

 Generation Firewalls Will Prevail. Internet:

 http://software.dell.com/documents/how-traditional-firewalls-fail-todays-

 networks-ebook-24532.pdf, 2012 [Oct. 21, 2014].

[16] Tech-Faq. “Firewalls. Internet: http://www.tech-faq.com/firewall.html, Sep. 26,

 2012 [Oct. 23, 2014].

[17] F. Avolio. “Firewalls and Internet Security, the Second Hundred (Internet) Years.”

 The Internet Protocol Journal, vol. 2, pp.1-5. Available:

 http://www.cisco.com/web/about/ac123/ac147/ac174/ac200/about_cisco_ipj_arch

 ive_article09186a00800c85ae.html [Nov. 5, 2014].

[18] E. Eugene Schultz. “83-10-41 Types of Firewalls.” Internet:

 http://www.ittoday.info/AIMS/DSM/83-10-41.pdf, [Nov. 5, 2014].

[19] K. Rajesh. “What are: Packet filtering, Circuit level, Application Level and Stateful

 Multilayer inspection Firewalls,” http://www.excitingip.com/205/what-are-

 packet-filtering-circuit-level-application-level-and-stateful-multilayer-inspection-

 firewalls/, Jun. 13,2009 [Nov. 5, 2014].

[20] Loye L. Ray. “A Matrix Model for Designing and Implementing Multi-firewall

 Environments.” The International Journal of Information Security Science, vol. 2,

 pp.119-128. Available:

 www.ijiss.org/ijiss/index.php/ijiss/article/download/30/pdf_13 [Nov. 18, 2014].

[21] H. Hamed, E. Al-Shaer, “Taxonomy of Conflicts in Network Security Policies”,

 IEEE Communications Magazine, Vol. 44, Issue 3, pp. 134-141, March 2006a.

[22] M. Marmorstein, “Formal Analysis of Firewall Policies”, College of William and

 Mary, doctoral dissertation, 2008.

http://www.cisco.com/web/about/ac123/ac147/ac174/ac200/about_cisco_ipj_archive_article09186a00800c85ae.html
http://www.cisco.com/web/about/ac123/ac147/ac174/ac200/about_cisco_ipj_archive_article09186a00800c85ae.html

www.manaraa.com

60

[23] A. Wool, “A Quantitative Study of Firewall Configuration Errors”, Computer, Vol.

 37, No. 6, pp. 62-67, June 2004.

[24] P.Eronen, J. Zitting. “An Expert System For Analyzing Firewall Rules.” Internet:

 http://astarloa.hit.bg/firewalls/An%20Expert%20System%20for%20Analyzing%2

 0Firewall%20Rules%20%282001%29.pdf, [Nov. 22, 2014].

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

 Shenker, and J. Turner. Openflow: enabling innovation in campus networks.

 ACM SIGCOMM Computer Communication Review, 2008.

[26] D. Gamayunov, I. Platonovm, R. Semlieansky. “Toward Network Access Control

 With Software-Defined Networking.” Internet:

 http://www.researchgate.net/profile/Ruslan_Smeliansky/publication/236148336_

 Toward_Network_Access_Control_With_Software-

 Defined_Networking/links/00b7d51caf777e947a000000.pdf, Jun. 06, 2013 [Nov.

 29, 2014].

[27] E. Al-Shaer and H. Hamed, “Modeling and Management of Firewall Policies,” in

 IEEE eTransactions on Network and Service Management, vol. 1-1, April 2004.

[28] G. Ferro., “Open Networking Foundation," [online] Mar, 18 2013,

 http://etherealmind.com/sdn-use-case-firewall-migration-in-the-enterprise/

 (Accessed: 03 December 2014).

[29] "OpenFlow Table Type Patterns” Open Network Foundation. August 15, 2014.

 December 2014

 <https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

 specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf>

[30] K. Agarwal, C. Dixon, E. Rozner, J. Carter. “Shadow MACs: scalable label-

 switching for commodity ethernet.” in Proc. Hot SDN ‘14 (SIGCOMM '14),

 2014, pp. 157-162.

[31] I. Pepelnjak. “Flow Table Explosion with OpenFlow 1.0 (And Why We Need

 OpenFlow 1.3).” http://blog.ipspace.net/2013/10/flow-table-explosion-with-

 openflow-10.html, [Dec. 10, 2014].

[32] M. Bushong., “Using big data for SDN: How analytics will enable

 programmability," [online] Aug, 2013,

 http://searchsdn.techtarget.com/opinion/Using-big-data-for-SDN-How-analytics-

 will-enable-programmability (Accessed: 09 January 2015).

[33] Netronome., “Software-Defined Network Functions Virtualization (SDN & NFV),"

 [online] 2013, https://netronome.com/wp-content/uploads/2013/12/Netronome-

 SDN-NFV-whitepaper_11-13.pdf (Accessed: 10 January 2015).

https://netronome.com/wp-content/uploads/2013/12/Netronome-
https://netronome.com/wp-content/uploads/2013/12/Netronome-

www.manaraa.com

61

[34] A. Cole., “SDN and Big Data: Enterprise, Analyze Thyself," [online] Nov, 7 2014,

 http://www.enterprisenetworkingplanet.com/datacenter/datacenter-blog/sdn-and-

 big-data-enterprise-analyze-thyself.html (Accessed: 21 January 2015).

[35] S. Rao., “SDN Series Part Three: NOX, the Original OpenFlow Controller," [online]

 Jan, 5 2013, http://thenewstack.io/sdn-series-part-iii-nox-the-original-openflow-

 controller/ (Accessed: 09 January 2015).

[36] D. Gupta, R. Jahan., “Inter-SDN Controller Communication: Using Border Gateway

 Protocol," [online] 2013,

 http://www.tcs.com/resources/white_papers/Pages/InterSDN-Controller-

 Communication.aspx (Accessed: 25 January 2015).

[37] J. Liao., “SDN System Performance," [online] June 13, 2012,

 http://www.tcs.com/resources/white_papers/Pages/InterSDN-Controller-

 Communication.aspx (Accessed: 02 February 2015).

[38] H. Hu, G.J, Ahn, W. Han, Z. Zaho., “SDN System Performance," [online] June 13,

 2012, http://www.tcs.com/resources/white_papers/Pages/InterSDN-Controller-

 Communication.aspx (Accessed: 02 February 2015).

[39] P. Costa, A. Donnelly, AIT. Rowstron, G. O’Shea. “Camdoop: Exploiting In-

 network Aggregation for Big Data Applications. in Proc. NSDI ‘12 (USENIX

 '12), 2014, pp. 3-3.

[40] D. Bartley, P. Andres, R. Hunter, B. Covington, P. Heller., “Architectural Strategies

 for IT Optimizations: From Silos to Clouds," [online] 2010,

 http://www.oracle.com/technetwork/topics/entarch/whatsnew/oea-wp-

 optimization-129780.pdf (Accessed: 29 March 2015).

[41] The Visible OPS Handbook Implementing ITIL In 4 Practical And Auditable Steps,

 Information Technology Process Institute., Phoenix, AZ, 2014.

[42] R. Colville, G. Spafford., “Configuration Management for Virtual and Cloud

 Infrastructures," [online] May 17, 2013,

 http://datasecuritycompliance.blogspot.com/2013/05/configuration-management-

 for-virtual.html (Accessed: 30 March 2015).

[43] B. Salisbury., “Inside Google's Software-Defined Network," [online] May 14, 2014,

 http://www.networkcomputing.com/networking/inside-googles-software-defined-

 network/a/d-id/1234201? (Accessed: 30 March 2015).

[43] A. Vahdat., “Enter the Andromeda zone - Google Cloud Platform’s latest

 networking stack," [online] April 2, 2014,

 http://googlecloudplatform.blogspot.com/2014/04/enter-andromeda-zone-google-

 cloud-platforms-latest-networking-stack.html (Accessed: 30 March 2015).

http://www.enterprisenetworkingplanet.com/datacenter/datacenter-blog/sdn-and-
http://www.enterprisenetworkingplanet.com/datacenter/datacenter-blog/sdn-and-

www.manaraa.com

62

[44] EC-Council. Albuquerque, NM: EC-Council Press, 2010.

[43] A. Vahdat., “Enter the Andromeda zone - Google Cloud Platform’s latest

 networking stack," [online] April 2, 2014,

 http://googlecloudplatform.blogspot.com/2014/04/enter-andromeda-zone-google-

 cloud-platforms-latest-networking-stack.html (Accessed: 30 March 2015).

[44] The Tolly Group - Company Background., “Tolly Enterprises, LLC," [online] 2014,

 http://www.tolly.com/AboutUs.aspx (Accessed: 31 March 2014).

[45] M. McNickle., “Five SDN protocols other than OpenFlow," [online] August 24,

 2014, http://searchsdn.techtarget.com/news/2240227714/Five-SDN-protocols-

 other-than-OpenFlow (Accessed: 31 March 2014).

www.manaraa.com

63

APPENDIX A

USING SOFTWARE DEFINED NETWORKING TO SOLVE

MISSED FIREWALL ARCHITECTURE

IN LEGACY NETWORKS

OpenFlow Pipeline Example

Denotes how the set-field action takes place.

cookie=0x0, duration=642.651s, table=0, n_packets=30, n_bytes=2586, send_flow_rem

tun_id=0x1,in_port=2 actions=goto_table:20

 cookie=0x0, duration=563.287s, table=0, n_packets=30, n_bytes=2586, send_flow_rem

in_port=3,dl_src=fa:16:3e:1c:fc:3b actions=set_field:0x1->tun_id,goto_table:10

 cookie=0x0, duration=644.372s, table=0, n_packets=37, n_bytes=4198, send_flow_rem

in_port=1,dl_src=fa:16:3e:e6:a8:9f actions=set_field:0x1->tun_id,goto_table:10

 cookie=0x0, duration=562.906s, table=0, n_packets=0, n_bytes=0, send_flow_rem

priority=8192,in_port=3 actions=drop

 cookie=0x0, duration=644.197s, table=0, n_packets=0, n_bytes=0, send_flow_rem

priority=8192,in_port=1 actions=drop

 cookie=0x0, duration=4641.604s, table=0, n_packets=125, n_bytes=11125,

send_flow_rem dl_type=0x88cc actions=CONTROLLER:56

 cookie=0x0, duration=643.569s, table=10, n_packets=33, n_bytes=3356, send_flow_rem

priority=8192,tun_id=0x1 actions=goto_table:20

www.manaraa.com

64

 cookie=0x0, duration=642.293s, table=10, n_packets=19, n_bytes=1614, send_flow_rem

priority=16384,tun_id=0x1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00

actions=output:2,goto_table:20

 cookie=0x0, duration=490.806s, table=10, n_packets=15, n_bytes=1814, send_flow_rem

tun_id=0x1,dl_dst=fa:16:3e:c8:c8:26 actions=output:2,goto_table:20

 cookie=0x0, duration=643.162s, table=20, n_packets=15, n_bytes=1814, send_flow_rem

priority=8192,tun_id=0x1 actions=drop

 cookie=0x0, duration=643.71s, table=20, n_packets=43, n_bytes=3658, send_flow_rem

priority=16384,tun_id=0x1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00

actions=output:1,output:3

 cookie=0x0, duration=643.931s, table=20, n_packets=24, n_bytes=2084, send_flow_rem

tun_id=0x1,dl_dst=fa:16:3e:e6:a8:9f actions=output:1

 cookie=0x0, duration=562.286s, table=20, n_packets=15, n_bytes=1814,

tun_id=0x1,dl_dst=fa:16:3e:1c:fc:3b actions=output:3

OpenFlow Pseudo Code Pipeline

BOOLEAN Change Application Network (Application){

 IF (App.HasChanged) AND {FlowPolicy.Firewall =

FlowPolicyAcceptance

 Then

 Controller.UpdateFlowPolicy

 Controller.SwitchFlowTableUpdate

 RETURN TRUE;

 ELSE IF FlowPolicy.Firewall != FlowPolicyAcceptance

 THEN

 App.FirewallHybrid

 Controller.UpdateFlowPolicy

 Controller.SwitchFlowTableUpdate

 RETURN TRUE;

 ELSE

 Controller.DoNotUpdateFlowPolicy

 Controller.SwitchFlowTableUnchanged

 RETURN FALSE;

www.manaraa.com

65

𝑓(𝐴𝑝𝑝1): 𝑆𝐶1∆(𝑁1 ∨ 𝐹1) → 𝑓(𝑃𝐶𝑌): 𝑆𝐶1 ∩ 𝐹1 = 𝑃𝐴 → 𝑆𝐶1∆(𝑆𝑊1 ∧ 𝐹1) ~ 𝑃𝐶𝑌

= 𝑃𝑅 → 𝑆𝐶1(𝑆𝑊1 ∧ 𝐹𝑥𝑁) = (𝑃𝐴 ∧ ∆𝑆𝐶1) ~ 𝑆𝐶1 ∩ 𝑄𝑜𝑆

→ 𝑆𝐶1(𝑆𝑊1 ∧ 𝐹2)

OpenFlow Repository

Stanford University Repository

http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git;a=summary

sudo apt-get -y install ssh

<ssh into your VM>

sudo apt-get install git-core automake m4 pkg-config libtool

git clone git://openflow.org/openflow.git

cd openflow

./boot.sh

wget http://openflow.org/downloads/openflow-1.0.0.tar.gz

tar xzf openflow-1.0.0.tar.gz

cd openflow-1.0.0

sudo apt-get install gcc

./configure

make

sudo make install

http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git;a=summary
git://openflow.org/openflow.git
http://openflow.org/downloads/openflow-1.0.0.tar.gz

www.manaraa.com

66

Firewall Local Search

[27]

	Using Software Defined Networking To Solve Missed Firewall Architecture In Legacy Networks
	Recommended Citation

	tmp.1436296835.pdf.CgBXm

